A Moore-like bound for mixed abelian Cayley graphs
نویسندگان
چکیده
We give an upper bound for the number of vertices in mixed abelian Cayley graphs with given degree and diameter.
منابع مشابه
NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملApproaching the mixed Moore bound for diameter two by Cayley graphs
In a mixed (Δ, d)-regular graph, every vertex is incident with Δ ≥ 1 undirected edges and there are d ≥ 1 directed edges entering and leaving each vertex. If such a mixed graph has diameter 2, then its order cannot exceed (Δ+ d) + d+1. This quantity generalizes the Moore bounds for diameter 2 in the case of undirected graphs (when d = 0) and digraphs (when Δ = 0). For every d such that d − 1 is...
متن کاملNormal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 54 شماره
صفحات -
تاریخ انتشار 2016